INSTRUCTIONS AND USAGE

CARBAGLU® (carglumic acid) is a Carbamoyl Phosphate Synthetase 1 (CPS1) activator indicated as:

- Adjunctive therapy in pediatric and adult patients for the treatment of acute hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). During acute hyperammonemic episodes, concomitant administration of CARBAGLU with other ammonia lowering therapies, such as alternate pathway medications, hemodialysis, and dietary protein restriction, is recommended.

- Maintenance therapy in pediatric and adult patients for the treatment of chronic hyperammonemia due to the deficiency of the hepatic enzyme N-acetylglutamate synthase (NAGS). During maintenance therapy, the concomitant use of other ammonia lowering therapies and protein restriction may be needed based on plasma ammonia levels.

IMPORTANT SAFETY INFORMATION

- Most common adverse reactions (>9%) are: vomiting, abdominal pain, pyrexia, tonsillitis, anemia, diarrhea, ear infection, infections, nasopharyngitis, hemoglobin decreased, and headache.
UREA CYCLE DISORDERS DON’T AFFECT JUST NEONATES...DIAGNOSING LATE-ONSET NAGS DEFICIENCY PATIENTS

UREA CYCLE AND DEFECTS

- In humans, nitrogen is produced by catabolism of proteins and excreted through the urea cycle process.
- The urea cycle converts waste nitrogen into ammonium.
- Deficiency of enzymes in the urea cycle may lead to a build-up of ammonium which is neurotoxic.

Interruption of the urea cycle causes hyperammonemia which, if untreated, may result in coma and death.

The mortality rate during hyperammonemic crises can reach 10%.

NAGS: N-acetylglutamate synthase
CPS1: carbamoyl phosphate synthetase 1
OTC: ornithine transcarbamylase
ASS: argininosuccinate synthetase
ASL: argininosuccinate lyase
ARG: arginase
Genetic testing is virtually the only method that can confirm a diagnosis of NAGS deficiency. For more information consult the National Center for Biotechnology Information (NCBI) Genetic Testing Registry at www.ncbi.nlm.nih.gov/gtr.
NAGS DEFICIENCY

- NAGS deficiency is a rare autosomal recessive urea cycle disorder. The classic presentation of urea cycle disorders including primary NAGS deficiency is high levels of ammonia in the neonatal period.
- Partial/milder enzyme deficiency may permit an individual to function normally until a stressor triggers a hyperammonemic crisis:
 - Valproic acid, heart-lung transplant, parenteral nutrition with high nitrogen intake
 - Post-partum stress, short bowel and kidney disease, gastrointestinal bleeding

GASTROINTESTINAL PRESENTATIONS
- Nausea, vomiting

NAGS DEFICIENCY IN LATE-ONSET PATIENTS: CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>FINDINGS IN REPORTED CASES OF CONFIRMED NAGS DEFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTROINTESTINAL PRESENTATIONS</td>
</tr>
<tr>
<td>Nausea, vomiting³</td>
</tr>
</tbody>
</table>

BLOOD AMMONIA 138-4781 µmol/L*³

* Normal blood ammonia levels in adults: 15-55 µmol/L³

DIAGNOSTIC CLUES AND MANAGEMENT

- Plasma ammonia should be measured promptly in all patients with unexplained encephalopathy, including cyclical manifestations, to identify possible underlying metabolic disorders³.
- Prompt diagnosis and initiation of treatment are necessary to avoid potentially poor neurological outcomes⁷.
- Patients should be managed by physicians and medical teams experienced in metabolic disorders⁸.
- The mainstay of ongoing management of NAGS deficiency is maintenance of plasma ammonia level in a normal range by avoiding catabolic stress and using carglumic acid⁸.

Carglumic acid is the treatment of choice in NAGS deficiency⁴.

IMPORTANT SAFETY INFORMATION

- Hyperammonemia: Monitor plasma ammonia level during treatment. Prolonged exposure to elevated plasma ammonia level can result in brain injury or death. Prompt use of all therapies necessary to reduce plasma ammonia level is essential.
ILLUSTRATIVE CASE OF NAGS DEFICIENCY DIAGNOSED IN A 38-YEAR-OLD MALE

20-year history of fluctuating behavioral changes associated with nausea and vomiting

<table>
<thead>
<tr>
<th>Past medical history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic (behavioral changes, confusion) in early childhood and adulthood</td>
</tr>
<tr>
<td>Ammonia levels never checked before hospitalization</td>
</tr>
<tr>
<td>Negative family history</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical course… in the emergency room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing nausea, vomiting, headache</td>
</tr>
<tr>
<td>Stable vital signs</td>
</tr>
<tr>
<td>Behavioral disinhibition and fluctuating drowsiness</td>
</tr>
<tr>
<td>Impaired coordination</td>
</tr>
<tr>
<td>Normal cranial nerve examination and power testing</td>
</tr>
<tr>
<td>Otherwise unremarkable general examination</td>
</tr>
<tr>
<td>Mild spasticity on muscle tone assessment</td>
</tr>
<tr>
<td>Significant asterixis (flapping tremor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>… during hospital admission and follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>High blood ammonia levels 434 µmol/L</td>
</tr>
<tr>
<td>Mild respiratory alkalosis</td>
</tr>
<tr>
<td>Normal head/spine MRI</td>
</tr>
<tr>
<td>Continuous EEG monitoring: generalized encephalopathy</td>
</tr>
<tr>
<td>Elevated glutamine level (1062 µmol/L), normal citrulline and urine amino acid levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular sequencing of the NAGS gene: compound heterozygote for E433G and IVS6+5 G>A, (both mutations) with residual NAGS expression that may explain the absence of neonatal hyperammonemia and delayed presentation in adult life</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low protein diet</td>
</tr>
<tr>
<td>Initially sodium phenylbutyrate (200 mg TID*) and citrulline (50 mg/kg TID)</td>
</tr>
<tr>
<td>Switched to carglumic acid (1200 mg TID) with a more liberalized protein intake</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia level returned to normal (29-35 µmol/L)</td>
</tr>
<tr>
<td>No hyperammonemic crisis for 2 years</td>
</tr>
<tr>
<td>Markedly improved behavior; short term memory loss remains</td>
</tr>
</tbody>
</table>

*TID: three times a day

IMPORTANT SAFETY INFORMATION

- Most common adverse reactions (>9%) are: vomiting, abdominal pain, pyrexia, tonsillitis, anemia, diarrhea, ear infection, infections, nasopharyngitis, hemoglobin decreased, and headache.

- To report SUSPECTED ADVERSE REACTIONS, contact Recordati Rare Diseases Inc. at 1-888-575-8344, or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
IMPORTANT SAFETY INFORMATION

• **Hyperammonemia**: Monitor plasma ammonia level during treatment. Prolonged exposure to elevated plasma ammonia level can result in brain injury or death. Prompt use of all therapies necessary to reduce plasma ammonia level is essential.

• Most common adverse reactions (>9%) are: vomiting, abdominal pain, pyrexia, tonsillitis, anemia, diarrhea, ear infection, infections, nasopharyngitis, hemoglobin decreased, and headache.

• **To report SUSPECTED ADVERSE REACTIONS, contact Recordati Rare Diseases Inc. at 1-888-575-8344, or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.**

• **Pregnancy**: No human data; decreased survival and growth in animal offspring.

• **Nursing Mothers**: Breastfeeding is not recommended while taking CARBAGLU.

REFERENCES

8. CARBAGLU Prescribing Information, Recordati Rare Diseases Inc., Lebanon, NJ; 2017.
ORDERING CARBAGLU® (carglumic acid)

Exclusive Distribution Through Accredo

Representatives at Accredo Health Group, Inc. are committed to helping you and your patients through the ordering process. CARBAGLU is not available in retail pharmacies.

Patient Home Delivery

1. Download the CARBAGLU Prescription & Enrollment Form from the Accredo website (www.accredo.com).
2. Complete the CARBAGLU Prescription & Enrollment Form and fax it to the Accredo specialty pharmacy department at 1-888-454-8488.
3. A CARBAGLU specialty pharmacy representative may call to verify information and determine next steps. In some cases, prior authorization may be necessary.
4. Questions? Contact a CARBAGLU specialty pharmacy representative at 1-888-454-8860.

Hospital Orders – Emergency or Inpatient

1. Alert your hospital pharmacy that your patient requires CARBAGLU. Send an order for CARBAGLU to your hospital pharmacy and specify whether it is a STAT order (required in 6 hours or less*).
2. Ask your hospital pharmacy to call the wholesale department at Accredo at 1-877-900-9223 to place the order.
3. The wholesale department at Accredo will work with your hospital pharmacy to obtain payment information, establish shipping timelines, and verify the delivery address.
4. The Accredo specialty pharmacy team will follow up in 1-2 days to help set up patient home delivery of CARBAGLU, if applicable.

*Delivery time frame is weather dependent and is not guaranteed.

FINANCIAL ASSISTANCE PROGRAMS

For patients experiencing financial hardship, Recordati Rare Diseases Inc. supports a Patient Assistance Program and a Co-Pay Assistance Program, administered by Accredo. For more information, call: 1-888-454-8860.

For more information about CARBAGLU, visit: www.carbaglu.net

Please see Full Prescribing Information, including Instructions for Use, at the end of this brochure.
CARBAGLU®
(carglumic acid) tablet for oral suspension

Initial U.S. Approval: 2010

INDICATIONS AND USAGE

The recommended initial daily dosage of CARBAGLU in pediatric and adult patients is 10 mg/kg to 100 mg/kg divided into 2 to 4 doses and rounded to the nearest 100 mg (i.e., half of a CARBAGLU tablet). Concomitant administration of CARBAGLU with other ammonia lowering therapies, such as alternate pathway medications, hemodialysis, and dietary protein restriction, is recommended.

Dosage and Administration

- **Acute Hyperammonemia:** The recommended initial pediatric and adult dosage is 100 mg/kg/day to 250 mg/kg/day. Titrate based on plasma ammonia level and clinical symptoms.
- **Maintenance for chronic hyperammonemia:** The recommended pediatric and adult maintenance dosage is 10 mg/kg/day to 100 mg/kg/day. Titrate to target normal plasma ammonia level for age.
- **Divide the total daily dose into two to four doses.**

ADVERSE REACTIONS

Most common adverse reactions (>9%) are:

- Vomiting
- Abdominal pain
- Pyrexia
- Tonsillitis
- Diarrhea
- Anemia
- Infections

Other reactions of concern include:

- Headache
- Rash
- Malaria

WARNINGS AND PRECAUTIONS

Hyperammonemia: Monitor plasma ammonia level during treatment. Prolonged exposure to elevated plasma ammonia levels may result in brain injury or death. Prompt use of all therapies necessary to reduce plasma ammonia level is essential. (5.1)

DOSAGE AND STRENGTHS

Tablets for oral suspension: 200 mg, functionally scored

CONTRAINDICATIONS

None. (4)

USE IN SPECIFIC POPULATIONS

- **Pregnancy:** No human data; decreased survival and growth in animal offspring. (8.1)
- **Nursing Mothers:** Breastfeeding is not recommended while taking CARBAGLU. (8.3)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revised: 11/2017

Preparation and Administration

- **Disperse CARBAGLU tablets in water. Do not swallow whole or crushed.**
- **Mix each 200 mg tablet in a minimum of 2.5 mL of water to yield a concentration of 80 mg/mL.**
- **CARBAGLU tablets do not dissolve completely in water and undissolved particles of the tablet may remain in the mixing container.**
- **Take CARBAGLU immediately before meals or feedings.**
- **The CARBAGLU suspension has a slightly acidic taste.**
- **For all preparations, use in foods or liquids, other than water, has not been studied.**

Dosage and Administration

- **Recommended Dosage**
 - **Initial Dosage:** The recommended initial daily dosage of CARBAGLU in pediatric and adult patients for acute hyperammonemia is 100 mg/kg to 250 mg/kg divided into 2 to 4 doses and rounded to the nearest 100 mg (i.e., half of a CARBAGLU tablet). Concomitant administration of other ammonia lowering therapies is recommended.
 - **Maintenance Dosage:** The recommended daily maintenance dosage of CARBAGLU in pediatric and adult patients is 10 mg/kg to 100 mg/kg divided into 2 to 4 doses and rounded to the nearest 100 mg (i.e., half of a CARBAGLU tablet).

Therapeutic Monitoring

Closely monitor plasma ammonia levels. Titrate the CARBAGLU dosage to maintain the plasma ammonia level within the normal range for the patient’s age, taking into consideration their clinical condition (e.g., nutritional requirements, protein intake, growth parameters, etc.).

Administration

- **For Oral Administration in Pediatric and Adult Patients**
 - For instructions on administration orally or through a nasogastric tube, see the full prescribing information.

Preparation for Nasogastric Tube Administration in Pediatric and Adult Patients

- **Add about 2.5 mL of water into a small cup for each CARBAGLU tablet or each ½ CARBAGLU tablet needed for the prescribed dose.**
- **Mix each 200 mg tablet in a minimum of 2.5 mL of water to yield a concentration of 80 mg/mL.**
- **CARBAGLU tablets do not dissolve completely in water and undissolved particles of the tablet may remain in the mixing container.**
- **Take CARBAGLU immediately before meals or feedings.**
- **The CARBAGLU suspension has a slightly acidic taste.**
- **For all preparations, use in foods or liquids, other than water, has not been studied clinically and is not recommended.**

Preparation for Oral Administration in Pediatric and Adult Patients

- **Add about 2.5 mL of water into a small cup for each CARBAGLU tablet or each ½ CARBAGLU tablet needed for the prescribed dose.**
- **Add the CARBAGLU tablets to the water in the cup.**
- **Carefully stir the tablet and water mixture.**
- **Swallow the mixture immediately. Pieces of the tablet may remain in the cup.**
- **Rinse the cup with additional water and swallow the mixture immediately. Repeat as needed until no pieces of the tablet are left in the cup.**

Preparation for Nasogastric Tube Administration in Pediatric and Adult Patients

For patients who have a nasogastric tube in place, CARBAGLU should be administered as follows:

- **Add about 2.5 mL of water into a small cup for each CARBAGLU tablet or each ½ CARBAGLU tablet needed for the prescribed dose.**
- **Add the CARBAGLU tablets to the water in the cup.**
- **Carefully stir the tablet and water mixture.**
- **Swallow the mixture immediately. Pieces of the tablet may remain in the cup.**
- **Rinse the cup with additional water and swallow the mixture immediately. Repeat as needed until no pieces of the tablet are left in the cup.**

Prevention

- **Monitor plasma ammonia and adjust the dosage to maintain the level within the normal range for age.**
- **Start CARBAGLU tablets with a minimum of 2.5 mL of water. Do not swallow whole or crushed.**
- **Take immediately before meals or feedings.**

Notices

- **WARNINGS AND PRECAUTIONS**
 - Hyperammonemia: Monitor plasma ammonia level during treatment. Prolonged exposure to elevated plasma ammonia levels may result in brain injury or death. Prompt use of all therapies necessary to reduce plasma ammonia level is essential. (5.1)

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use CARBAGLU safely and effectively. See full prescribing information for CARBAGLU.
There are no adequate and well controlled studies or available human data with CARBAGLU in pregnant women. Decreased survival and growth occurred in offspring born to animals that received carglumic acid at a dose approximately 38 times the maximum reported human maintenance dose. Because untreated N-acetylglutamate synthase (NAGS) deficiency results in irreversible neural damage and death, women with NAGS must remain on treatment throughout pregnancy.

No effects on embryo-fetal development were observed in pregnant rats treated with up to 2000 mg/kg/day (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC [area under the plasma concentration-time curve]) from two weeks prior to mating through organogenesis or in pregnant rabbits treated with up to 1000 mg/kg/day (approximately 6 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC).

In a peri- and post-natal developmental study, female rats received oral carglumic acid from organogenesis through lactation at doses of 500 and 2000 mg/kg/day. Decreased growth of offspring was observed at 500 mg/kg/day and higher (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC) and reduction in offspring survival during lactation was observed at 2000 mg/kg/day (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC). No effects on physical and sexual development, learning and memory, or reproductive performance were observed through maturation of the surviving offspring at maternal doses up to 2000 mg/kg/day. The high dose (2000 mg/kg/day) resulted in maternal toxicity (impaired weight gain and approximately 10% mortality).

6.3 Nursing Mothers
It is not known whether CARBAGLU is excreted in human milk. Carglumic acid is excreted in rat milk, and an increase in mortality and impairment of body weight gain occurred in neonatal rats nursed by mothers receiving carglumic acid. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from CARBAGLU, breast-feeding is not recommended. Treatment is continuous and life-long for NAGS deficiency patients.

8.4 Pediatric Use
The efficacy of CARBAGLU for the treatment of hyperammonemia in patients with NAGS deficiency from birth to adulthood was evaluated in a retrospective review of the clinical course of 23 NAGS deficiency patients who all began CARBAGLU treatment during infancy or childhood. Therefore, there are no apparent differences in clinical response between adults and pediatric NAGS deficiency patients treated with CARBAGLU. However, data are limited.

8.5 Geriatric Use
CARBAGLU has not been studied in the geriatric population. Therefore, the safety and effectiveness in geriatric patients have not been established.

10 OVERDOSAGE
One patient treated with 650 mg/kg/day of carglumic acid developed symptoms characterized as a monosodium glutamate intoxication-like syndrome: tachycardia, profuse sweating, increased bronchial secretion, increased body temperature, and restlessness. These symptoms resolved upon reduction of dose.

Repeated oral dosing of carglumic acid at 2000 mg/kg/day was lethal to most neonatal rats within 2-3 days of treatment. The plasma concentrations that produced lethality were not measured. In adult rats, a single oral administration of carglumic acid was not lethal at doses up to 2800 mg/kg (approximately 20 times the maximum starting dose based on C_{max}).

11 DESCRIPTION
CARBAGLU tablets for oral suspension, contain 200 mg of carglumic acid. Carglumic acid, the active substance, is a Carbamoyl Phosphate Synthetase 1 (CPS 1) activator and is soluble in boiling water, slightly soluble in cold water, and practically insoluble in organic solvents.

Chemically carglumic acid is N-carbamoyl-L-glutamic acid or (2S)-2-(carbamoylamino) pentanedioic acid, with a molecular weight of 190.16.

The structural formula is:

![Structural formula of carglumic acid](attachment:image.png)

Molecular Formula: $C_{11}H_{18}N_{2}O_{5}$

The inactive ingredients of CARBAGLU are croscarmellose sodium, hypromellose, microcrystalline cellulose, silica colloidal anhydrous, sodium lauryl sulfate, sodium stearoyl fumarate.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Carglumic acid is a synthetic structural analogue of N-acetylglutamate (NAG) which is produced from glutamate and acetyl-CoA in a reaction catalyzed by N-acetylglutamate synthase (NAGS), a mitochondrial liver enzyme. NAG acts as an essential allosteric activator of Carbamoyl Phosphate Synthetase 1 (CPS 1), a mitochondrial liver enzyme which catalyzes the first reaction of the urea cycle. The urea cycle, whose role is the disposition of ammonia, includes a series of biochemical reactions in the liver resulting in the conversion of ammonia into urea, which is then excreted through the urine. Carglumic acid acts as a CPS 1 activator in patients with NAGS deficiency, thereby removing the block in the urea cycle and facilitating ammonia detoxification and urea production.

12.2 Pharmacodynamics
In a retrospective review of the clinical course in 23 patients with NAGS deficiency, carglumic acid reduced plasma ammonia levels within 24 hours when administered with and without concomitant ammonia lowering therapies. No dose response relationship has been identified.

12.3 Pharmacokinetics
The pharmacokinetics of carglumic acid have been studied in healthy male subjects using both radiolabeled and non-radiolabeled carglumic acid.
On-going (22%)

Male

Ammonia**

Mean (SD) 181 (358)

Statistics (N = 13*)

Missing Data

Mean (SD) 21 (35)

Median 157

Range 72-1428

N 10

Day 1

Mean (SD) 69 (78)

Median 44

Range 11-255

N 13

Day 2

Mean (SD) 27 (11)

Median 26

Range 12-42

N 13

Day 3

Mean (SD) 23 (7)

Median 24

Range 9-34

N 21

Long-term

Mean: 8 years

Median: 6 years

1 to 16 years

(last available value on CARBAGLU treatment)

Patients current treatment status

On-going 18 (78%)

Discontinued 5 (22%)

The median plasma ammonia level at baseline and the decline that is observed after treatment with CARBAGLU in 13 evaluable patients with NAGS deficiency is illustrated in Figure 1.

Figure 1: Ammonia response for 13 evaluable NAGS deficiency patients at baseline and after treatment with CARBAGLU

<table>
<thead>
<tr>
<th>Timepoint</th>
<th>Mean (SD)</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (prior to first treatment with CARBAGLU)</td>
<td>271 (359)</td>
<td>157</td>
<td>72-1428</td>
</tr>
<tr>
<td>Day 1</td>
<td>181 (358)</td>
<td>65</td>
<td>25-1190</td>
</tr>
<tr>
<td>Day 2</td>
<td>69 (78)</td>
<td>44</td>
<td>11-255</td>
</tr>
<tr>
<td>Day 3</td>
<td>27 (11)</td>
<td>26</td>
<td>12-42</td>
</tr>
</tbody>
</table>

* 13/23 patients with complete short-term and long-term plasma ammonia documentation

** Mean ammonia normal range: 5 to 50 micromol/L

The clinical observations in the 23 patient case series were retrospective, unblinded and uncontrolled and preclude any meaningful formal statistical analyses of the data. However, short-term efficacy was evaluated using mean and median change in plasma ammonia levels from baseline to days 1 to 3. Persistence of efficacy was evaluated using long-term mean and median change in plasma ammonia level. Table 3 summarizes the plasma ammonia levels at baseline, days 1 to 3 post-CARBAGLU treatment, and long-term CARBAGLU treatment for 13 evaluable patients. Of the 23 NAGS deficiency patients who received treatment with CARBAGLU, a subset of 13 patients who had both well documented plasma ammonia levels prior to CARBAGLU treatment and after long-term treatment with CARBAGLU were selected for analysis.

All 13 patients had abnormal ammonia levels at baseline. The overall mean baseline plasma ammonia level was 271 micromol/L. By day 3, normal plasma ammonia levels were attained in patients for whom data were available. Long-term efficacy was measured using the last reported plasma ammonia level for each of the 13 patients analyzed (median length of treatment was 6 years; range 1 to 16 years). The mean and median ammonia levels were 23 micromol/L and 24 micromol/L, respectively, after a mean treatment duration of 8 years.

The clinical observations in the 23 patient case series were retrospective, unblinded and preclude any meaningful formal statistical analyses of the data. However, short-term efficacy was evaluated using mean and median change in plasma ammonia levels from baseline to days 1 to 3. Persistence of efficacy was evaluated using long-term mean and median change in plasma ammonia level. Table 3 summarizes the plasma ammonia levels at baseline, days 1 to 3 post-CARBAGLU treatment, and long-term CARBAGLU treatment for 13 evaluable patients. Of the 23 NAGS deficiency patients who received treatment with CARBAGLU, a subset of 13 patients who had both well documented plasma ammonia levels prior to CARBAGLU treatment and after long-term treatment with CARBAGLU were selected for analysis.

All 13 patients had abnormal ammonia levels at baseline. The overall mean baseline plasma ammonia level was 271 micromol/L. By day 3, normal plasma ammonia levels were attained in patients for whom data were available. Long-term efficacy was measured using the last reported plasma ammonia level for each of the 13 patients analyzed (median length of treatment was 6 years; range 1 to 16 years). The mean and median ammonia levels were 23 micromol/L and 24 micromol/L, respectively, after a mean treatment duration of 8 years.

Absorption

The median Tmax of CARBAGLU was 3 hours (range: 2 to 4 hours). Absolute bioavailability has not been determined.

Distribution

The apparent volume of distribution was 2657 L (range: 1616-5797). Protein binding has not been determined.

Elimination

Metabolism

A proportion of carglumic acid may be metabolized by the intestinal bacterial flora. The likely end product of carglumic acid metabolism is carbon dioxide, eliminated through the lungs.

Excretion

Median value for the terminal half-life was 5.6 hours (range 4.3 to 9.5 hours), the apparent total clearance was 5.7 L/min (range 3.0 to 9.7 L/min), the renal clearance was 290 mL/min (range 204 to 445 mL/min), and the 24-hour urinary excretion was 4.5% of the dose (range 3.5 to 7.5%). Following administration of a single radioabeled oral dose of 100 mg/kg of body weight, 9% of the dose was excreted unchanged in the urine and up to 60% of the dose was excreted unchanged in the feces.

Drug Interaction Studies

No drug interaction studies have been performed. Based on in vitro studies, CARBAGLU is not an inducer of CYP1A1/2, CYP26, CYP2C, and CYP3A4/5 enzymes, and not an inhibitor of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 enzymes.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

The carcinogenic potential of carglumic acid was assessed in a 2-year carcinogenicity study in rats. Carglumic acid was not tumorigenic at oral doses up to 1000 mg/kg/day (approximately 34 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC).

Carglumic acid was negative in the Ames test, chromosomal aberration assay in human lymphocytes, and the in vivo micronucleus assay in rats.

There were no effects on fertility or reproductive performance in female rats at oral doses up to 2000 mg/kg/day (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC). In a separate study, mating and fertility were unaffected in male rats at oral doses up to 1000 mg/kg/day (approximately 34 times the maximum reported human maintenance dose [100 mg/kg/day] based on AUC).

14 CLINICAL STUDIES

14.1 Responses of Patients with NAGS Deficiency to Acute and Chronic Treatment

The efficacy of CARBAGLU in the treatment of hyperammonemia due to NAGS deficiency was evaluated in a retrospective review of the clinical course of 23 NAGS deficiency patients who received CARBAGLU treatment for a median of 7.9 years (range 0.6 to 20.8 years). Treatment with CARBAGLU was divided in two regimens. For acute treatment, patients received a total daily dose of 100 to 250 mg/kg per day primarily administered in 2 to 4 divided doses for the first few days of treatment. For maintenance treatment, the dosage was reduced over time based upon biochemical and clinical responses.

The demographics characteristics of the patient population are shown in Table 2.

Table 2. Baseline Characteristics of the 23 NAGS deficiency patients

<table>
<thead>
<tr>
<th>Gender</th>
<th>Patients N=23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>14 (61%)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (39%)</td>
</tr>
<tr>
<td>Age at initiation of CARBAGLU therapy (years)</td>
<td>Mean (SD) 2 (4)</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0-13</td>
</tr>
<tr>
<td>Age groups at initiation of CARBAGLU therapy</td>
<td>< 30 days 9 (39%)</td>
</tr>
<tr>
<td></td>
<td>>30 days - 11 months 9 (39%)</td>
</tr>
<tr>
<td></td>
<td>≥1 - 13 years 5 (22%)</td>
</tr>
<tr>
<td>NAGS gene mutations by DNA testing</td>
<td>homozygous 14 (61%)</td>
</tr>
<tr>
<td></td>
<td>heterozygous 4 (17%)</td>
</tr>
<tr>
<td></td>
<td>Not available 5 (22%)</td>
</tr>
<tr>
<td>Patients current treatment status</td>
<td>On-going 18 (78%)</td>
</tr>
<tr>
<td></td>
<td>Discontinued 5 (22%)</td>
</tr>
</tbody>
</table>

The clinical observations in the 23 patient case series were retrospective, unblinded and uncontrolled and preclude any meaningful formal statistical analyses of the data. However, short-term efficacy was evaluated using mean and median change in plasma ammonia levels from baseline to days 1 to 3. Persistence of efficacy was evaluated using long-term mean and median change in plasma ammonia level. Table 3 summarizes the plasma ammonia levels at baseline, days 1 to 3 post-CARBAGLU treatment, and long-term CARBAGLU treatment for 13 evaluable patients. Of the 23 NAGS deficiency patients who received treatment with CARBAGLU, a subset of 13 patients who had both well documented plasma ammonia levels prior to CARBAGLU treatment and after long-term treatment with CARBAGLU were selected for analysis.

All 13 patients had abnormal ammonia levels at baseline. The overall mean baseline plasma ammonia level was 271 micromol/L. By day 3, normal plasma ammonia levels were attained in patients for whom data were available. Long-term efficacy was measured using the last reported plasma ammonia level for each of the 13 patients analyzed (median length of treatment was 6 years; range 1 to 16 years). The mean and median ammonia levels were 23 micromol/L and 24 micromol/L, respectively, after a mean treatment duration of 8 years.
Storage
- Store UNOPENED container in a refrigerator at 2 to 8°C (36 to 46°F). After first opening of the container, do not refrigerate, store at room temperature between 15 to 30°C (59 to 86°F). Keep the container tightly closed in order to protect from moisture. Write the date of opening on the tablet container. Discard one month after first opening. Do not use after the expiration date stated on the tablet container.

Lactation
- Advise women not to breast-feed during treatment with CARBAGLU [see Use in Specific Populations (8.3)].

Supplied by:
Orphan Europe SARL
Puteaux, France

Licensed to and Distributed by:
Recordati Rare Diseases Inc.
Lebanon, NJ 08833

For drug or ordering information please call Accredo Health Group Inc., Customer Service at 1-888-454-8860.

Carbaglu

Carbaglu® is a licensed trademark of Recordati Rare Diseases Inc.
This product label may have been updated. For the most recent prescribing information, please visit www.recordatirarediseases.com or www.carbaglu.net.
INSTRUCTIONS FOR USE
CARBAGLU (CAR-buh-gloo) (carglumic acid) tablet for oral suspension

Important information:
• CARBAGLU tablet for oral suspension (CARBAGLU tablet) must be mixed in water before taking. CARBAGLU tablets should not be mixed in any other food or liquid.
• Do not swallow CARBAGLU tablets whole.
• Do not crush CARBAGLU tablets.
• Take CARBAGLU right before meals or feedings.
• The CARBAGLU tablet and water mixture has a slightly sour taste.

You may need to ask your healthcare provider or pharmacist for a medicine cup to measure the correct amount of water you will need to prepare your dose of CARBAGLU.

Taking CARBAGLU tablets by mouth using a cup:

Children and Adults
1. Add about 2.5 mL of water into a small cup for each CARBAGLU tablet, or each ½ CARBAGLU tablet, needed for the prescribed dose. For example, if the prescribed dose is 2 CARBAGLU tablets, add about 5 mL of water into the cup. If the prescribed dose is 2½ CARBAGLU tablets, add about 7.5 mL of water into the cup. Ask your healthcare provider if you are not sure of how much water you should use for the prescribed dose of CARBAGLU.
2. Place the prescribed number of CARBAGLU tablets into the water in the cup.
3. Carefully stir the CARBAGLU tablet and water mixture in the cup to avoid spilling the mixture. CARBAGLU tablets do not dissolve completely in water.
4. Swallow the CARBAGLU tablet and water mixture right away.
5. Pieces of the tablet may remain in the cup. Add more water to the cup to rinse the cup and swallow the mixture right away.
6. Repeat step 5 until there are no pieces of the tablet left in the cup.

Taking CARBAGLU tablets by mouth using an oral syringe:

Children
1. Add about 2.5 mL of water into a small cup for each CARBAGLU tablet, or each ½ CARBAGLU tablet, needed for the prescribed dose. For example, if the prescribed dose is 2 CARBAGLU tablets, add about 5 mL of water into the cup. If the prescribed dose is 2½ CARBAGLU tablets, add about 7.5 mL of water into the cup. Ask your healthcare provider if you are not sure of how much water you should use for the prescribed dose of CARBAGLU.
2. Place the prescribed number of CARBAGLU tablets into the water in the cup.
3. Carefully stir the CARBAGLU tablet and water mixture in the cup to avoid spilling the mixture. CARBAGLU tablets do not dissolve completely in water.
4. Draw up all of the CARBAGLU tablet and water mixture in the cup into an oral syringe.
5. Give your child the CARBAGLU tablet and water mixture right away by placing the tip of the oral syringe along the inner cheek of their mouth, on either the right or left side. Slowly push all the way down on the plunger to give the medicine.
6. Pieces of the tablet may remain in the oral syringe. Refill the oral syringe with at least 1 mL to 2 mL of water, and give your child the mixture right away.
7. Repeat step 6 until there are no pieces of the tablet left in the oral syringe.

Giving CARBAGLU tablets through a nasogastric (NG) tube:
Children and Adults
1. Add about 2.5 mL of water into a small cup for each CARBAGLU tablet, or each ½ CARBAGLU tablet, needed for the prescribed dose. For example, if the prescribed dose is 2 CARBAGLU tablets, add about 5 mL of water into the cup. If the prescribed dose is 2½ CARBAGLU tablets, add about 7.5 mL of water into the cup. Ask your healthcare provider if you are not sure of how much water you should use for the prescribed dose of CARBAGLU.
2. Place the prescribed number of CARBAGLU tablets into the water in the cup.
3. Carefully stir the CARBAGLU tablet and water mixture in the cup to avoid spilling the mixture. CARBAGLU tablets do not dissolve completely in water.
4. Draw up all of the CARBAGLU tablet and water mixture in the cup into a catheter-tip syringe.
5. Connect the catheter-tip syringe to the NG tube.
6. Give the CARBAGLU tablet and water mixture through the NG tube right away.
7. Pieces of the tablet may remain in the catheter-tip syringe or NG tube. Refill the catheter-tip syringe with 1 mL to 2 mL of water and flush the NG tube right away.
8. Repeat step 7 until there are no pieces of the tablet left in the catheter-tip syringe or NG tube.

How should I store CARBAGLU?
• Before opening, store CARBAGLU in a refrigerator between 36°F to 46°F (2°C to 8°C) in the container it comes in.
• After opening, store CARBAGLU at room temperature between 59°F to 86°F (15°C to 30°C). Do not store CARBAGLU in a refrigerator.
 ○ Keep CARBAGLU tablets in a tightly closed container to protect the tablets from moisture.
 ○ Write the date the CARBAGLU tablet container is opened on the container label. Throw away any unused tablets one month after opening the tablet container.
• Do not use CARBAGLU tablets after the expiration date on the tablet container.

Keep CARBAGLU and all medicines out of the reach of children.

This Instructions for Use has been approved by the U.S. Food and Drug Administration.

Distributed by:
Recordati Rare Diseases Inc.
Lebanon, NJ 08833

Recordati Rare Diseases

Recordati Group

Carbaglu® is a licensed trademark of Recordati Rare Diseases Inc.

PP-CBGL-US-0098